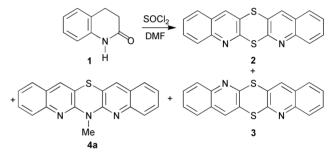
Synthesis of novel heteropentacenes containing nitrogen, sulfur and oxygen or selenium[†]

Małgorzata Nowak, Krystian Pluta* and Kinga Suwińska

^a Department of Organic Chemistry, The Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland. E-mail: pluta@slam.katowice.pl


Received (in Montpellier, France) 27th February 2002, Accepted 22nd April 2002 First published as an Advance Article on the web 12th August 2002

Reactions of 2,2'-dichloro-3,3'-diquinolinyl sulfide with selected S-, O-, Se-, C- and N-nucleophiles proceeded as a hetero-ring closure to form six linear annelated pentacyclic heterocycles with a sulfur-containing central ring (1,4-dithiin, 1,4-thiazine, 1,4-thiaselenin, 1,4-oxathiin and thiopyran) in moderate to good yields. The Xray study of selected heteropentacenes revealed that heteropentacenes, in contrast to homopentacene, are nonplanar and folded along the central sulfur-heteroatom axis. The central six-membered ring is in a boat conformation.

Considerable recent interest has focused on organic materials with interesting electronic, optoelectronic or magnetic properties. The basic strategy is the investigation of the molecular donors and acceptors. The incorporation of polarizable heteroatoms within the donor framework is regarded as one important aspect to design new polyheterocyclic donor molecules. Very few papers have appeared in the literature about fused pentacyclic heterocycles (linear heteropentacenes and angular heteropentaphenes). The synthesis of these compounds is fatiguing and the yields (from very low, 2%, to good, 80%) depend mainly on the heteroatom to be incorporated into the ring system. 1-5 Some azathiapentaphenes and diazadithiapentacenes show photoelectric properties⁶ and some diazapentacenes are considered as photodynamic therapeutic agents against cancer cell lines, bacteria and viruses. Very recent studies demostrated the remarkable potential of homopentacene for device applications.8,5

Results and discussion

In continuation of our studies on 1,4-dithiinodiquinolines^{10–12} we tried to synthesize and improve the yield $(6\%)^{13}$ of heteropentacene 2 from the reaction of 3,4-dihydro-2(1H)-quinolone 1 with thionyl chloride in DMF at higher temperature (152 °C instead of 100 °C) and we obtained dithiin 2 in 13% yield, its isomeric dithiin 3 in 4% yield and unexpectedly the novel heteropentacene, 6-methyl-1,4-thiazinodiquinoline 4a in 21% yield (Scheme 1). The formation of thiazine 4a can be explained by an action of DMF on the substrate or intermediates. This result prompted us to try to obtain other 1,4-thiazinodiquinoline and generally choose a strategy for the construction of other heteropentacenes. Since we found 4,4'dichloro-3,3'-diquinolinyl sulfide to be a very useful substrate to get selected heteropentaphenes, ^{14–16} its isomer, 2,2dichloro-3,3'-diquinolinyl sulfide 7, should be appropriate for the synthesis of heteropentacenes. This sulfide can be isolated

Scheme 1

from the reaction of 3,4-dihydro-2(1H)-quinolone 1 with thionyl chloride in DMF at room temperature in 23% yield¹³ but the described procedure is not quite so simple because, beside sulfide 7, not only 2,2'-dichloro-3,3'-diquinolinyl disulfide¹³ but small amounts of dithiins 2 and 3 are also formed. Thus, we decided not only to isolate these from the reaction mixture but also transform dithiin 2 into sulfide 7. For this purpose we carried out the 1,4-dithiin ring opening in dithiin 2 with sodium methanethiolate in DMSO followed by S-methylation with methyl iodide to form 2,2'-dimethylthio-3,3'-diquinolinyl sulfide 5 (in 89% yield). The latter compound was hydrolyzed using an ethanol-hydrochloric acid mixture to give diquinolonyl sulfide 6 (in 94% yield), which underwent reaction with phosphoryl chloride to form the required dichloro compound 7 (in 94% yield). The total yield of this transformation is 79% (Scheme 2).

Reactions of sulfide 7 with selected divalent Z-reagents (S-, O-, Se-, C- and N-nucleophiles) under various conditions led to heteropentacenes containing nitrogen, sulfur and oxygen or selenium in moderate to good yields. In all cases these reagents did not substitute the sulfur atom, as was observed in a similar reaction of diquinoxalinyl sulfide with butylamine.⁴ Reaction of sulfide 7 with boiling DMF in the presence of sodium hydroxide confirmed our supposition on the action of DMF, giving thiazine 4a in 68% yield (Scheme 3). The same product was obtained in 51% yield when sulfide 7 reacted with

^b Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland

[†] Part LXX in the series of Azinyl Sulfides. Part LXIX: B. Morak, K. Pluta and K. Suwińska, Heterocycl. Commun., in press.

Scheme 3

methylamine using the phenolic procedure.¹⁵ Thiazines with aryl substituents, for example 6-phenylthiazinodiquinoline **4b**, can be easily obtained in 82% yield in the reaction of sulfide 7 with aniline in boiling MEDG (methyl ether of diethylene glycol), using the reported procedure^{14,15} (Scheme 4).

Reaction of sulfide 7 with thiourea in boiling MEDG gave the already known heteropentacene 2 in 91% yield. Similar reaction with selenourea gave the novel heteropentacene 8 in 81% yield. Since the reaction of sulfide 7 with sodium hydroxide in MEDG gave no cyclization product, and that with acetic acid and acetic anhydride in pyridine gave only 7% of oxathiinodiquinoline 9, we changed the substrate. Cyclization of diquinolonyl sulfide 6 in the presence of phosphorus pentoxide gave the required heteropentacene 9 in 53% yield.

Reaction of the dichloro compound 7 with a selected C-nucleophile, a carbanion generated from phenylacetonitrile, in DMSO in the presence of sodium hydroxide led to the novel heteropentacene 10 in 82% yield.

The ¹H NMR spectra of the obtained heteropentacenes **2**, **4**, **8–10**, recorded in deuteriochloroform at 500 MHz, showed four multiplets (two doublet-shaped multiplets with one

ortho-coupling and two triplet-shaped multiplets with two ortho-couplings, J = 7-8.5 Hz) of an ABCD system of the benzene ring protons and a singlet of the pyridine ring protons (i.e., H-12 and H-14). In order to assign unquestionably all of the benzene protons, homonuclear NOE experiments and ¹H-¹H correlations (COSY) were used. Irradiation of the singlet protons caused a slight enhancement (1.3-4.9%) of one of the doublet-shaped multiplet signals, being more upfield than the another, which was attributed to the H-1 and H-11 protons due to peri interactions (Scheme 5). The COSY spectra permitted the complete assignment of the remaining proton signals. All the ¹H NMR spectra showed the spectral equivalency of the left and right parts of heteropentacenes 2, 4, 8-10, which implies that all these reactions ran without cleavage of the C-S bond and all these heteropentacenes have C_{2v} symmetry.

To avoid any discussions that the ring closure reaction is preceded by a Smiles rearrangement stage and that the spectral identity is fortuitous, and above all to determine the conformation and configuration of these novel heteropentacenes, we carried out X-ray structural determinations of thiazine 4b (published separately¹⁷), thiaselenin 8 and thiopyran 10 (we were not able to prepare appropriate single crystals of oxathiin 9). In contrast to homopentacene, ¹⁸ heteropentacenes 4b, 8 and 10 are nonplanar (Figs. 1 and 2). The central heterocyclic ring is in a boat conformation with the S(1) and Z atoms [N(3),Se(1) or C(21)] out of the basal plane formed by the C(2), C(3), C(2'), C(3') plane. The heteropentacene ring system is folded mainly along the S(1)-Z axis and slightly along the C(2)-C(3) and C(2')–C(3') axes. The butterfly angle between two quinoline planes and the dihedral angles between the planes determined by the atoms of the two halves of the central heterocyclic rings [i.e., S(1), Z, C(2), C(3) and S(1), Z, C(2'), C(3')] are different depending on the nature of the central ring (Table 1). The quinoline ring system is quite planar, the dihedral angles between the pyridine and benzene rings are less than 1.9°. In contrast to the phenyl group in heteropentacene 4b, which is in the quasi-equatorial location [S···N-C_{phenvl} angle of 163.0(2)°], 17 the same group in heteropentacene 10 is in the quasi-axial location with a $S\cdots C\!-\!C_{phenyl}$ angle of 86.3(1)°. The plane of the phenyl group nearly bisects the pentacene ring system in 4b¹⁷ and 10 with dihedral angles of $73.4(1)^{\circ}$ and $89.1(1)^{\circ}$ between the phenyl plane and the C(2),

Fig. 1 ORTEP drawing of heteropentacene 8.

C(3), C(2'), C(3') plane. The nature of the heteroatom Z affects not only the Z bond angle but also the sulfur bond angle and to a lesser degree the C(2) and C(3) bond angles. In contrast to this, the S–C bond lengths are nearly unchanged (Table 1).

Conclusions

We report here an efficient synthesis of novel heteropentacenes, possessing different central 6-membered rings (*i.e.*, a dithiin, a thiopyran, a thiazine, an oxathiin and a thiaselenin ring), in the annulation reactions of 2,2-dichloro-3,3'-diquinolinyl

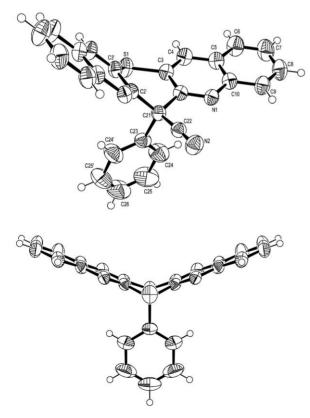


Fig. 2 ORTEP drawing of heteropentacene 10.

Table 1 Comparison of geometrical features of selected novel heteropentacenes

Geometrical feature	8	10	4b ¹⁷
C–S bond length/Å	1.763(3)	1.7546(15)	1.70(3)
			1.761(4)
C–Z bond length/Å	1.906(3)	1.5297(18)	1.395(4)
			1.410(4)
C–S–C angle/°	104.25(18)	98.88(10)	100.1(2)
C–Z–C angle/°	120.20(17)	110.53(16)	123.8(2)
Dihedral angle between quinoline moieties/o	26.80(7)	44.73(3)	20.5(1)
Angle between the halves of the central ring/°	41.03(7)	47.47(5)	30.6(1)
Displacement of the S(1) atom from C(2),C3),C(2'),C(3') plane/Å	0.645(5)	0.580(3)	0.481(1)
Displacement of the Z atom from C(2),C3),C(2'),C(3') plane/Å	0.423(5)	0.563(3)	0.247(4)

sulfide with various divalent Z-reagents (selected S-, O-, Se-, C- and N-nucleophiles).

Experimental

Melting points were determined in open capillary tubes on a Boetius melting point apparatus and are uncorrected. The ¹H NMR spectra were recorded on Bruker AM 500 and Varian Unity Inova 300 spectrometers at 500.13 and 300 MHz in deuteriochloroform and dimethyl sulfoxide-d₆ with tetramethylsilane as the internal standard. Electron impact mass spectra (EI MS) were run on a LKB 9000S at 70 eV.

Synthesis

5,7-Diaza-6,13-dithiapentacene **2**, 5,12-diaza-6,13-dithiapentacene **3** and 2,2';-dichloro-3,3'-diquinolinyl sulfide **7** were obtained by reported procedures¹³ and by the procedures described below. Additionally, heteropentacene **2** was obtained by isomerization of heteropentacene **3**.¹⁹

5,7-Diaza-6,13-dithiapentacene 2. A solution of sulfide **7** (0.36 g, 1 mmol) and thiourea (0.15 g, 2 mmol) in 20 mL of MEDG was stirred for 30 min at ambient temperature and then refluxed for 1 h. After cooling pale yellow needles precipitated, which were filtered off to give heteropentacene **2** (0.29 g, 91%); mp 257–258 °C, lit. ¹³ mp 258–259 °C. ¹H NMR (CDCl₃): δ 7.52 (m, 2H, H-2, H-10), 7.69 (m, 2H, H-3, H-9), 7.73 (m, 2H, H-1, H-11), 8.02 (m, 2H, H-4, H-8), 8.17 (s, 2H, H-12, H-14).

6-Methyl-5,6,7-triaza-13-thiapentacene 4a. (*a*) To a boiling solution of 3,4-dihydro-2(1*H*)-quinolone (4.41 g, 30 mmol) in anhydrous DMF (50 mL) thionyl chloride (6.6 mL, 90 mmol) was added over 15 min and then the solution was boiled for 1 h. After cooling the resulting solid was filtered off, washed with water and air-dried. Separation by column chromatography (silica gel 60, chloroform) gave (1) heteropentacene **2** (0.10 g, 2%); mp 257–258 °C, lit. ¹³ mp 258–259 °C and (2) 5,12-diaza-6,13-dithiapentacene **3** (0.20 g, 4%); mp 285–286 °C, lit. ¹³ mp 287–289 °C.

The filtrate was poured into water (300 mL) and the resulting solid was filtered off, washed with water and air-dried. The solid was stirred with chloroform (4 × 8 mL), the insoluble material was filtered off and the filtrate was concentrated and separated by column chromatography (silica gel 60, chloroform) to give (1) heteropentacene **4a** (0.98 g, 21%); mp 200–201 °C. 1 H NMR (CDCl₃): δ 3.90 (s, 3H, CH₃), 7.31 (m, 2H, H-2, H-10), 7.54 (m, 2H, H-1, H-11), 7.55 (m, 2H, H-3,

- H-9), 7.73 (s, 2H, H-12, H-14), 7.82 (m, 2H, H-4, H-8). MS: m/z 315 (M⁺, 100). Anal. calcd for C₁₉H₁₃N₃S: C 72.36, H 4.15, N 13.32. Found: C 72.17, H 4.24, N 13.18. (2) Heteropentacene **3** (0.54 g, 11%); mp 257–258 °C, lit. ¹³ mp 258–259 °C.
- (b) A mixture of sulfide 7 (0.36 g, 1 mmol), sodium hydroxide (0.04 g, 1 mmol) and DMF (10 mL) was refluxed for 2 h. After cooling the reaction mixture was poured into water (15 mL) and the resulting solid was filtered off, washed with water, air-dried and purified by column chromatography (silica gel 60, chloroform) to give heteropentacene 4a (0.21g, 68%); mp 200–201 °C.
- (c) To a solution of sulfide 7 (0.36 g, 1 mmol) in phenol (2 g) at $180\,^{\circ}\text{C}$ methylamine [generated from methylamine hydrochloride (0.35 g, 5 mmol) and 5% sodium hydroxide solution] was added by portions during 1 h. After cooling water (20 mL) was added and phenol was distilled off. The crude product was filtered off, washed with water, air-dried and purified by column chromatography (silica gel 60, chloroform) to give heteropentacene **4a** (0.16 g, 51%).
- **6-Phenyl-5,6,7-triaza-13-thiapentacene 4b.** A solution of sulfide **7** (0.36 g, 1 mmol) and aniline (0.18 mL, 2 mmol) in MEDG (10 mL) was refluxed for 4 h. After cooling pale yellow needles precipitated, which were filtered off to give heteropentacene **4b** (0.31 g, 82%); mp 262–263 °C. ¹H NMR (CDCl₃): δ 7.28 (m, 2H, H-2, H-10), 7.42 (m, 2H, H-3, H-9), 7.47 (d, 2H, o-C₆H₅), 7.51 (d, 1H, p-C₆H₅), 7.52 (m, 2H, H-1, H-11), 7.54 (m, 2H, H-4, H-8), 7.60 (d, 2H, m-C₆H₅), 7.78 (s, 2H, H-12, H-14). MS: m/z 377 (M⁺, 100). Anal. calcd for C₂₄H₁₅N₃S: C 76.37, H 4.01, N 11.13. Found: C 76.19, H 4.11, N 11.06.
- **2,2'-Dimethylthio-3,3'-diquinolinyl sulfide 5.** To a suspension of dithiin **2** (0.32 g, 1 mmol) in dry DMSO (10 mL) at 70 °C sodium methanethiolate (0.08 g, 1.2 mmol) was added. The mixture was stirred for 15 min. After cooling the reaction mixture was poured into 15% aqueous sodium hydroxide (30 mL) and stirred with methyl iodide (0.1 mL, 1.6 mmol). The resulting solid was filtered off, washed with water, air-dried and purified by column chromatography (silica gel 60, chloroform) to give heteropentacene **5** (0.34 g, 89%); mp 188–189 °C. 1 H NMR (CDCl₃): δ 2.69 (s, 6H, 2SCH₃), 7.41 (m, 2H, 2H-6), 7.61 (m, 2H, 2H-5), 7.65 (m, 2H, 2H-7), 7.87 (s, 2H, 2H-4), 7.97 (m, 2H, 2H-8). MS: m/z 380 (M⁺, 88.6), 333 (M⁺ CH₃S, 100), 318 (M⁺ (CH₃)₂S, 27.6]. Anal. calcd for $C_{20}H_{16}N_{2}S_{3}$: C 63.13, H 4.24, N 7.36. Found: C 63.04, H 4.29, N 7.25.
- **3,3'-Bis(2-oxo-1,4-dihydroquinolinyl) sulfide 6.** A mixture of sulfide **5** (0.38 g, 1 mmol), ethanol (10 mL) and concentrated hydrochloric acid (10 mL) was refluxed for 72 h. After cooling the resulting solid was filtered off and dissolved in a mixture of DMSO (1 mL) and 15% aqueous sodium hydroxide (3 mL). Acidification with 10% hydrochloric acid to pH ~9 yielded a solid, which was filtered off, washed with water and air-dried to give sulfide **6** (0.30 g, 94%); mp 290–292 °C. ¹H NMR (DMSO-d₆): δ 7.17 (m, 2H, 2H-6), 7.36 (m, 2H, 2H-8?), 7.50 (m, 2H, 2H-7), 7.65 (m, 2H, 2H-5?), 7.90 (s, 2H, 2H-4), 12.1 (s, 2H, 2NH). MS: m/z 320 (M⁺, 100), 303 (M⁺ OH, 10.0), 287 (M⁺ SH, 16.7). Anal. calcd for C₁₈H₁₂N₂O₂S: C 67.48, H 3.78, N 8.74. Found: C 67.33, H 3.88, N 8.62.
- **2,2'-Dichloro-3,3'-diquinolinyl sulfide 7.** Sulfide **6** (0.32 g, 1 mmol) was refluxed in phosphoryl chloride (4 mL) for 1 h. After cooling the reaction mixture was carefully poured on ice (40 g) and alkalized with concentrated ammonia to pH \sim 10. The resulting solid was filtered off, washed with water and crystallized from ethanol to give sulfide **7** (0.34 g, 94%); mp 197–198 °C, lit. ¹³ mp 198–200 °C. ¹H NMR (CDCl₃): δ 7.58 (m, 2H, H-6), 7.71 (m, 2H, 2H-5), 7.77 (m, 2H, 2H-7), 8.01 (s, 2H, 2H-4), 8.06 (m, 2H, 2H-8).

- **5,7-Diaza-6-selena-13-thiapentacene 8.** A solution of sulfide 7 (0.36 g, 1 mmol) and selenourea (0.25 g, 2 mmol) in MEDG (20 mL) was stirred for 30 min at ambient temperature and then refluxed for 1 h. After cooling pale yellow needles precipitated, which were filtered off to give heteropentacene 8 (0.30 g, 81%); mp 283–284 °C. ¹H NMR (CDCl₃): δ 7.56 (m, 2H, H-2, H-10), 7.73 (m, 2H, H-3, H-9), 7.77 (m, 2H, H-1, H-11), 8.09 (m, 2H, H-4, H-8), 8.28 (s, 2H, H-12, H-14). MS: m/z 365 (M⁺, 100), 286 (M⁺ Se, 85.2), 285 (M⁺ SeH, SeH, 13.9). Anal. calcd for C₁₈H₁₀N₂SSe: C 59.18, H 2.76, N 7.67. Found: C 59.02, H 2.84, N 7.58.
- **5,7-Diaza-6-oxa-13-thiapentacene 9.** (a) A solution of sulfide 7 (0.36 g, 1 mmol) in a mixture of solvents: pyridine (16 mL), acetic anhydride (14 mL) and acetic acid (2 mL), was refluxed for 3 h. After cooling the solution was diluted with cold water (4 mL). The resulting solid was filtered off and crystallized from MEDG to give heteropentacene **9** (0.02 g, 7%).
- (*b*) Sulfide **6** (0.32 g, 1 mmol) was mixed with phosphorus pentoxide (0.99 g, 7 mmol) and heated at 200 °C for 15 h. After cooling water (10 mL) was added very carefully and the resulting suspension was alkalized with ammonia. The precipitated solid was filtered off, washed with water, air-dried and purified by column chromatography (silica gel 60, chloroform) to give heteropentacene **9** (0.16g, 53%); mp 252–253 °C. ¹H NMR (CDCl₃): δ 7.47 (m, 2H, H-2, H-10), 7.64 (m, 2H, H-3, H-9), 7.68 (m, 2H, H-1, H-11), 7.95 (m, 2H, H-4, H-8), 7.99 (s, 2H, H-12, H-14). MS: m/z 302 (M⁺, 100), 270 (M⁺ S, 19.2). Anal. calcd for $C_{18}H_{10}N_2OS$: C 71.51, H 3.33, N 9.27. Found: C 71.39, H 3.40, N 9.19.
- **14-Cyano-14-phenyl-5,7-diaza-13-thiapentacene 10.** A mixture of sulfide **7** (0.36 g, 1 mmol), phenylacetonitrile (0.23 g; 2 mmol), potassium hydroxide (0.08 g, 2 mmol) and dry DMSO (10 mL) was stirred at 80 °C for 1 h. After cooling the reaction mixture was poured into water (40 mL). The resulting solid was filtered off and crystallized from MEDG to give heteropentacene **10** (0.33 g, 82%); mp 269–270 °C. 1 H NMR (CDCl₃): δ 6.92 (d, 2H, o-C₆H₅), 7.15(t, 2H, m-C₆H₅), 7.22 (t, 1H, p-C₆H₅), 7.64 (m, 2H, H-2, H-10), 7.78 (m, 2H, H-3, H-9), 7.80 (m, 2H, H-1, H-11), 8.26 (s, 2H, H-12, H-14), 8.35 (m, 2H, H-4, H-8). MS: m/z 401 (M⁺, 100), 376 (M⁺ CN, 29.1), 324 (M⁺ C₆H₅, 17.3). Anal. calcd for C₂₆H₁₅N₃S: C 77.78, H 3.77, N 10.47. Found: C 77.67, H 3.74, N 10.48.

X-Ray analysis

The intensity data were collected on a Nonius Kappa CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda=0.71073$ Å). The structures were solved by direct methods (SHELXS-86)²⁰ and refined by full-matrix least-squares based on all unique F^2 (SHELXL-93).²¹ All non-hydrogen atoms were refined anisotropically, hydrogen atoms were 'riding' on their carbon atoms ($d_{\text{C-H}}$) = 0.93 Å, $U_{\text{iso}}=1.2U_{\text{eq}}$ of the attached C atom.

Crystal data for **8**: $C_{18}H_{10}N_2SSe$, $M_r = 365.30$, orthorhombic, a = 14.3960(1), b = 16.1410(4), c = 6.1360(6) Å, space group *Pnma*, Z = 4, u = 1425.8 Å³, T = 293(2), $\mu(Mo K\alpha) = 2.776 \text{ cm}^{-1}$. 3139 reflections were collected of which 1673 were unique and 1379 with $I \ge 2\sigma(I)$ ($R_{\text{int}} = 0.022$). The structure was refined to R = 0.0449, $R_w = 0.1006$.

Crystal data for **10**: C₂₆H₁₅N₃S, $M_r = 401.47$, orthorhombic, a = 9.8440(3), b = 15.5250(3), c = 13.2510(6) Å, space group *Pnma*, Z = 4, u = 2025.1 Å³, T = 293(2), μ (Mo K α) = 0.178 cm⁻¹. 4485 reflections were collected of which 2397 were unique and 1776 with $I \ge 2\sigma(I)$ ($R_{\rm int} = 0.023$). The structure was refined to R = 0.0459, $R_w = 0.1078$.

CCDC reference numbers 190255 and 190256. See http://www.rsc.org/suppdata/nj/b2/b202107m/ for crystallographic files in CIF or other electronic format.

Notes and references

- C. Marti, J. Irurre, A. Alvarez-Larena, J. F. Piniella, E. Brillas, L. Fajari, C. Alemán and L. Juliá, J. Org. Chem., 1994, 59, 6200.
- L. Fajari, C. Alemán and L. Juliá, J. Org. Chem., 1994, 59, 6200.
 L. Engman, J. Hellberg, C. Ishaq and S. Söderholm, J. Chem. Soc., Perkin Trans. I, 1988, 2095.
- 3 J. Hellberg and M. E. Pelcman, Tetrahedron Lett., 1994, 35, 1769.
- 4 A. R. Ahmad, L. K. Mehta and J. Parrick, J. Chem. Soc., Perkin Trans. I, 1996, 2443.
- 5 E. E. Boros and M. Harfenist, J. Org. Chem., 1998, 63, 10045.
- S. Yoshida, K. Nozawa, N. Sato and T. Uchida, *Bull. Chem. Soc. Jpn.*, 1994, 67, 2017.
- 7 D. F. Gloster, L. Cincotta and J. M. Foley, J. Heterocycl. Chem., 1999, 36, 25.

- J. H. Schön, S. Berg, C. Kloc and B. Batlogg, Science, 2000, 287, 1022.
- J. H. Schön, C. Kloc, E. Bucher and B. Batlogg, *Nature*, 2000, 403, 408.
- 10 K. Pluta, J. Heterocycl. Chem., 1992, 29, 1599.
- 1 K. Pluta, J. Heterocycl. Chem., 1995, 32, 1245.
- 12 K. Pluta, Heterocycles, 1999, 51, 2861.
- 13 B. A. Dreikorn, F. E. Elsasser and G. P. Jourdan, *J. Org. Chem.*, 1979, **44**, 877.
- 14 K. Pluta, Phosphorus, Sulfur Silicon Relat. Elem., 1994, 92, 149.
- 15 K. Pluta, Phosphorus, Sulfur Silicon Relat. Elem., 1997, 126, 145.
- 16 K. Pluta, A. Maślankiewicz and M. Szmielew, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2000, 159, 79.
- 17 K. Pluta, M. Nowak and K. Suwińska, J. Crystallogr. Chem., 2000, 30, 479.
- 18 R. B. Campbell, J. M. Robertson and J. Trotter, Acta Crystallogr., 1962, 15, 289.
- 19 K. Pluta and M. Nowak, manuscript in preparation.
- 20 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- G. M. Sheldrick, SHELXS93, University of Göttingen, Germany, 1993.